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Consider a general matrix population model [1]

d ~N

dt
= A0

~N, (1)

where the projection matrix is given by

A0 =



a11 0 0 . . . . . . 0
a21 a22 0 . . . . . . 0
0 a32 0 . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . 0 0

...
... . . . . . . an−1.n−1 0

0 0 . . . . . . an,n−1 ann


. (2)

Note that A0 is an abstraction of the A0 in the main text where

aii =

{
ri(pi − qi) for 1 ≤ i < n− 1
−d for i = n

(3)

ai+1,i = 2riqi. (4)

A0 is a a lower triangular matrix, whose eigenvalues are just the diagonal elements. Suppose the largest
eigenvalue of A0 is unique (or simple), denoted as λ0 = aj0j0 , then we can calculate the associated left
eigenvector as

~µ =
1∏j0−1

i=1

(
aj0j0−aii
ai+1,i

) (1,
aj0j0 − a11

a21
,

(aj0j0 − a11)(aj0j0 − a22)

a21a32
, ...,

j0−1∏
i=1

(
aj0j0 − aii
ai+1,i

)
, 0, ..., 0

)T
(5)

and its right eigenvalue as (using the convention ~µT ~η = 1)

~η =

0, ..., 0, 1,
aj0+1,j0

aj0,j0 − aj0+1,j0+1
, ...,

n−1∏
i=j0

ai+1,i

aj0,j0 − ai+1,i+1

T

. (6)

Suppose that the population in Eq. (1) is not shrinking, which implies that there exists at least one
non-negative diagonal element in A0. In this way, the largest eigenvalue λ0 is the largest among all the
non-negative diagonal elements of A0. Notice that ann = −d is always negative, it cannot be the largest
eigenvalue, the possible value of j0 hence can only range from 1 to n− 1.
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1 Stepwise de-differentiation
The stepwise de-differentiation case corresponds to a matrix perturbation to A0 as follows (ρ� 1):

AS =



a11 ρ . . . . . . . . . 0
a21 a22 − κρ . . . . . . . . . 0
0 a32 − (1 − κ)ρ . . . . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . ρ 0

...
... . . . . . . an−1,n−1 − κρ 0

0 0 . . . . . . an,n−1 − (1 − κ)ρ ann


. (7)

As discussed in the main text, we assume that λ0 is unique. According to the matrix eigenvalue perturbation
theory (Theorem 4.4 in [2]) the largest eigenvalue λS of AS can be approximately expressed as

λS ≈ λ0 + ∆λSρ. (8)

Here, ∆λS is given by

∆λS = ~µT
[
∂AS
∂ρ

]
ρ=0

~η, (9)

where ~µ and ~η are the left and right eigenvectors associated with λ0, respectively. Note that

[
∂AS
∂ρ

]
ρ=0

=



0 1 . . . . . . . . . 0
0 −κ . . . . . . . . . 0
0 −(1 − κ) . . . . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . 1 0

...
... . . . . . . −κ 0

0 0 . . . . . . −(1 − κ) 0


, (10)

such that we have

∆λS =


a21

a11−a22 for j0 = 1
aj0,j0−1

aj0,j0
−aj0−1,j0−1

+
aj0+1,j0

aj0,j0
−aj0+1,j0+1

− κ for 1 < j0 < n− 1
an−1,n−2

an−1,n−1−an−2,n−2
− κ for j0 = n− 1

(11)

By substituting Eqs. (3) and (4) into the above result, we obtain that

∆λS =


2r1q1

r1(p1−q1)−r2(p2−q2) for j0 = 1
2rj0−1qj0−1

rj0 (pj0−qj0 )−rj0−1(pj0−1−qj0−1)
+

2rj0qj0
rj0 (pj0−qj0 )−rj0+1(pj0+1−qj0+1)

− κ for 1 < j0 < n− 1
2rn−2qn−2

rn−1(pn−1−qn−1)−rn−2(pn−2−qn−2)
− κ for j0 = n− 1

(12)

If we define Γj,k,l =
2rjqj

rk(pk−qk)−rl(pl−ql) , then the expression for ∆λS can be simplified to

∆λS =

 Γ1,1,2 for j0 = 1
Γj0−1,j0,j0−1 + Γj0,j0,j0+1 − κ for 1 < j0 < n− 1
Γn−2,n−1,n−2 − κ for j0 = n− 1

(13)
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2 Jumpwise de-differentiation
For the jumpwise de-differentiation case, we consider the matrix perturbation to A0 (ρ� 1)

AJ =



a11 0 0 . . . ρ 0
a21 a22 0 . . . . . . 0
0 a32 a33 . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . 0 0

...
... . . . . . . an−1.n−1 − κρ 0

0 0 . . . . . . an,n−1 − (1 − κ)ρ ann


. (14)

Similarly, the largest eigenvalue λJ of AJ can be approximately expressed as

λJ ≈ λ0 + ∆λJρ, (15)

where ∆λJ is given by

∆λJ = ~µT
[
∂AJ
∂ρ

]
ρ=0

~η. (16)

The matrix derivative is given by

[
∂AJ
∂ρ

]
ρ=0

=



0 0 0 . . . 1 0
0 0 0 . . . . . . 0
0 0 0 . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . 0 0

...
... . . . . . . −κ 0

0 0 . . . . . . −(1 − κ) 0


, (17)

such that we have

∆λJ =


∏n−2

i=1 ai+1,i∏n−1
i=1,i 6=j0

(aj0,j0
−aii)

for 1 ≤ j0 < n− 1∏n−2
i=1 ai+1,i∏n−1

i=1,i 6=j0
(aj0,j0

−aii)
− κ for j0 = n− 1

. (18)

By substituting Eqs. (3) and (4) into the above result, we obtain

∆λJ =


∏n−2

i=1 (2riqi)∏n−1
i=1,i 6=j0

(rj0 (pj0−qj0 )−ri(pi−qi))
. for 1 ≤ j0 < n− 1∏n−2

i=1 (2riqi)∏n−1
i=1,i 6=j0

(rj0 (pj0−qj0 )−ri(pi−qi))
− κ. for j0 = n− 1

. (19)

By defining Γj,k,l =
2rjqj

rk(pk−qk)−rl(pl−ql) , the result for ∆λJ can be simplified to

∆λJ =

{ (∏j0−1
i=1 Γi,j0,i

)(∏n−1
i=j0+1 Γi−1,j0,i

)
for 1 ≤ j0 < n− 1∏n−2

i=1 Γi,n−1,i − κ for j0 = n− 1
, (20)

which completes the calculation of the selection gradients ∆λS and ∆λJ in the main text.

3



0 0.05 0.1 0.15 0.2

De-differentiation influx rate 

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

L
e
a
d
in

g
 e

ig
e
n
v
a
lu

e 0

0
+

J
J

0

0
+

J

J

0

0
+

J

J

r
1
=0.5

r
1
=0.58

r
1
=0.64

Figure 1: Illustration of the accuracy of the matrix eigenvalue perturbation for three values of the stem
cell division rate r1. Full lines are the exact expressions for the leading eigenvalue corresponding to the
population growth rate in the case of jumpwise de-differentiation. Dotted lines show the leading eigenvalues
in the case of no de-differentiation and dashed lines show the values of the linear approximation discussed
in the text (parameters n = 4, d = 0.05, κ = 0.1, p1 = 0.9, p2 = 0.6, p3 = 0.55, r2 = 0.5, and r3 = 0.1).
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